Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Low-temperature plasmas have seen increasing use for synthesizing high-quality, mono-disperse nanoparticles (NPs). Recent work has highlighted that an important process in NP growth in plasmas is particle trapping—small, negatively charged nanoparticles become trapped by the positive electrostatic potential in the plasma, even if only momentarily charged. In this article, results are discussed from a computational investigation into how pulsing the power applied to an inductively coupled plasma (ICP) reactor may be used for controlling the size of NPs synthesized in the plasma. The model system is an ICP at 1 Torr to grow silicon NPs from an Ar/SiH 4 gas mixture. This system was simulated using a two-dimensional plasma hydrodynamics model coupled to a three-dimensional kinetic NP growth and trajectory tracking model. The effects of pulse frequency and pulse duty cycle are discussed. We identified separate regimes of pulsing where particles become trapped for one pulsed cycle, a few cycles, and many cycles—each having noticeable effects on particle size distributions. For the same average power, pulsing can produce a stronger trapping potential for particles when compared to continuous wave power, potentially increasing particle mono-dispersity. Pulsing may also offer a larger degree of control over particle size for the same average power. Experimental confirmation of predicted trends is discussed.more » « less
-
Low temperature plasmas are an emerging method to synthesize high quality nanoparticles (NPs). An established and successful technique to produce NPs is using a capacitively coupled plasma (CCP) in cylindrical geometry. Although a robust synthesis technique, optimizing or specifying NP properties using CCPs, is challenging. In this paper, results from a computational investigation for the growth of silicon NPs in flowing inductively coupled plasmas (ICPs) using Ar/SiH4 gas mixtures of up to a few Torr are discussed. ICPs produce more locally constrained and quiescent plasma potentials. These positive plasma potentials produce an electrostatic trap for negatively charged NPs, which can significantly extend the residence time of NPs in the plasma, which in turn provides a controllable period for particle growth. The computational platforms used in this study consist of a two-dimensional plasma hydrodynamics model, a three-dimensional nanoparticle growth and trajectory tracking model, and a molecular dynamics simulation for deriving reactive sticking coefficients of silane radicals on Si NPs. Trends for the nanoparticle growth as a function of SiH4 inlet fraction, gas residence time, energy deposition per particle, pressure, and reactor diameter are discussed. The general path for particle synthesis is the trapping of small NPs in the positive electrostatic potential, followed by entrainment in the gas flow upon reaching a critical particle size. Optimizing or controlling NP synthesis then depends on the spatial distribution of plasma potential, the density of growth species, and the relative time that particles spend in the electrostatic trap and flowing through higher densities of growth species upon leaving the trap.more » « less
-
Abstract Low-pressure nonthermal flowing plasmas are widely used for the gas-phase synthesis of nanoparticles and quantum dots of materials that are difficult or impractical to synthesize using other techniques. To date, the impact of temporary electrostatic particle trapping in these plasmas has not been recognized, a process that may be leveraged to control particle properties. Here, we present experimental and computational evidence that, during their growth in the plasma, sub-10 nm silicon particles become temporarily confined in an electrostatic trap in radio-frequency excited plasmas until they grow to a size at which the increasing drag force imparted by the flowing gas entrains the particles, carrying them out of the trap. We demonstrate that this trapping enables the size filtering of the synthesized particles, leading to highly monodisperse particle sizes, as well as the electrostatic focusing of the particles onto the reactor centerline. Understanding of the mechanisms and utilization of such particle trapping will enable the design of plasma processes with improved size control and the ability to grow heterostructured nanoparticles.more » « less
An official website of the United States government
